

DIRECT METHANOL, LIQUID-FEED FUEL CELL PROGRESS AND PROSPECTS

Gerald. Halpert

Jet Propulsion Laboratory

Pasadena, California

proton exchange

Membrane

Presented at IMTOF '99 Denver, Colorado June 21, 1999

COMPARISON OF DIRECT AND INDIRECT METHANOL FUEL CELL OPERATION

INDIRECT METHANOL FUEL CELL SYSTEM

DIRECT METHANOL FUEL CELL SYSTEM

DIRECT OXIDATION

- 1. REDUCES COMPLEXITY
- 2. REDUCES WEIGHT BY 25%-50%
- 3. IMPROVES RELIABILITY
- 4. REDUCES COST

DIRECT METHANOL FUEL CELL SYSTEM ADVANTAGES

ABSENCE OF POLLUTANTS

H₂O AND CO₂ ARE THE ONLY PRODUCTS

COMPARED TO H₂/O₂ FUEL CELLS DIRECT REACTION OF METHANOL SIMPLIFIES FUEL SYSTEM

- ELIIMINATES HIGH PRESSURE HYDROGEN STORAGE
- ELIMINATES REFORMER TO CONVERT METHANOL TO H₂
- NO WARMUP PROBLEMS AND SLUGGISH RESPONSE
- ELIMINATES HYDRIDE STORAGE

LIQUID FEED OF METHANOL

- REDUCES STACK COMPLEXITY (E.G. COOLING PLATES)
- CONVENIENT FUEL DELIVERY AND STORAGE
- LIQUID FUEL MIX PREVENTS SEPARATOR DRYOUT

OPERATION POSSIBLE AT ROOM TEMPERATURE

DIRECT METHANOL FUEL CELL SCHEMATIC

DIRECT METHANOL, LIQUID-FEED FUEL CELL REACTIONS

Anode
$$CH_3OH + H_2O = CO_2 + 6H^+ + 6e^-$$

Cathode
$$6H^+ + 3/2O_2 + 6e^- = 3H_2O$$

Net Reaction
$$CH_3OH + 3/2O_2 = CO_2 + 2H_2O$$

1 LITER OF CH₃OH CAN PRODUCE ~ 5.0 KWh 34% (1.7 KWh) ACHIEVED THUS FAR

PROJECTIONS FOR 1.2 KW DMFC STACK

INTERNALLY MANIFOLDED

LOW PRESSURE

~6 CELLS / INCH

COMPOSITE MOLDED BIPLATES

1.2 KW @60°C, 2.4 KW @ 90°C VOLTAGE ~16v CELLS ~35 DIMENSIONS 27CM X 27CM X 14CM

PERFORMANCE IMPROVEMENT

FUEL: 3%(I m) MEOH, 90°C, AIR AT 20 PSIG, 4" x 6" ELECTRODE AREA

ADVANCES DUE TO

IMPROVEMENTS IN CATALYST COMPOSITION

IMPROVEMENTS IN ELECTRODE STRUCTURE

IMPROVEMENTS TO CATALYST / ELECTRODE /MEMBRANE INTERFACE

IMPROVEMENTS IN PROCESSING CATALYST

LOAD HANDLING CHARACTERISTICS

•Good Transient Response in the 0-500 ms range.

SUMMARY OF ADVANCES

- Demonstrated Power Densities of 230 mw/cm² (100 Amps on 4" x 6" electrode area)
- Demonstrated system operation at 50W level
- Developed an Demo'd Low Concentration MeOH Sensor
- Demonstrated Excellent Load Following
- Demonstrated Stable Catalyst Performance >400 Hours of Intermittent Operation
- New Methods for Layering Catalysts Reduces catalyst and cost
- New Proton Exchange Membrane
 Increased Efficiency to >45% and Reduced Cost
- Developed Model for Complete 150W System DARPA 150W System Demonstration 9/99

DIRECT METHANOL FUEL CELL SYSTEM CONCEPT

TRANSPORTATION APPLICATIONS FOR THE JPL DIRECT METHANOL FUEL CELL

APPLICATIONS FOR THE DIRECT METHANOL, LIQUID-FEED FUEL CELL

NEAR TERM
SAIL / POWER BOATS
EMERGENCY POWER
GOLF CARTS
PEOPLE MOVERS
AIRPORT VEHICLES
FACTORY TRUCKS
LAWN MOWERS

DIRECT METHANOL FUEL CELL VEHICLES

ARDEC HYBRID METHANOL SYSTEM

ELECTROCHEMICAL TECHNOLOGIES GROUP

DARPA 150 WATT FUEL CELL SYSTEM

CHARACTERISTICS

150 W **POWER**

5000 WH CAPACITY

VOLTAGE 24V

CURRENT 6.25A

MASS (W FUEL) 12 KG

VOL.

30 LITERS

OP. TEMP. 15-42°C

START -UP

< 1 MIN.

DIRECT METHANOL 2.3 KW FUEL CELL SYSTEM IN A LIGHT DUTY VEHICLE APPLICATION

PEOPLE-MOVER

LOAD CAPACITY 1600 LBS

BED VOLUME 253 LITERS

SYS. VOL. 80 LITERS

MASS 118 KG

MEOH TANK 10LITERS

ENERGY 12.3 KWH

CONT. OPER. 10 HRS

Projected Advances in Performance with Air at 300 mA/cm2 & 90C

METHANOL THEORETICAL ENERGY = 5kWh / LITER

1998 State-of-Art

0.50 Volts
42% Voltage Efficient
80% Fuel Efficient
34% Overall
(1.7 kWh / L)

2000
Reduce X-Over
with New Membrane

0.55 Volts
46%Voltage Efficient
90% Fuel Efficient
41% Overall
(2 kWh / L)

2002
Reduce X-Over &
Improve MEA

0.60 Volts
50% Voltage Efficient
95% Fuel Efficient
48% Overall
(2.25 kWh / L)

With Lower Crossover, Can Use Higher MeOH Concentration

→ Higher Current Projected

METHANOL CROSSOVER AND ITS IMPLICATIONS

Implications:

Parasitic fuel loss;20%

Lower cell voltage; by 0.1V

Increased air demand

Reduction in efficiency

MEMBRANES WITH LOW METHANOL CROSSOVER RATE

New membranes have about 10% of the crossover observed with Nafion 117, and ionic conductivity similar to Nafion11100

DIRECT METHANOL FUEL CELL CHALLENGES AND RESOLUTIONS

- Reduce Methanol Crossover to Increase Efficiency
 - Solution USC Membrane Cuts Crossover From 20-5%
 - Efficiency Increased from 34 to 45%
- Water Accumulation And Removal
 - Solution New Flow Fields & Materials Solve Problem
- Catalyst Preparation Is Time Consuming
 - Solution Engineering / Manufacturing Scale-Up Will Reduce Process Time
- Manufacturer Needed to Initiate Pilot Operation
 - Several Have shown Interest
 - Exclusive License Exists

A FINAL THOUGHT FOR YOUR CONSIDERATION

THE TECHNOLOGY IS READY

THE APPLICATIONS EXIST

THE ENVIRONMENT AWAITS

THE CHALLENGE IS FOR INDUSTRY TO MOVE IT INTO COMMERCIALIZATION

SUMMARY

- •METHANOL FUEL CELLS HAVE APPLICATION OVER A WIDE POWER RANGE FROM LOW WATTS TO KILOWATTS
- •METHANOL IS A CONVENIENT FUEL THAT IS EASY TO HANDLE AND STORE
- •THE DIRECT METHANOL FUEL CELL IS LESS COMPLICATED, EASIER TO OPERATE, AND MORE COMPACT THAN THE COMPETING TECHNOLOGY
- •MAJOR ADVANCES IN MEA TECHNOLOGY HAVE RESULTED IN SIGNIFICANT PERFORMANCE IMPROVEMENT
- •LOW CROSSOVER MEMBRANE PROMISES FURTHER ADVANCES IN PERFORMANCE AND EFFICIENCY